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COVID-19 is linked to changes in the  
time–space dimension of human mobility

Clodomir Santana    1, Federico Botta    1,2, Hugo Barbosa    1, Filippo Privitera3, 
Ronaldo Menezes    1,2,4 & Riccardo Di Clemente    1,2,5 

Socio-economic constructs and urban topology are crucial drivers of 
human mobility patterns. During the coronavirus disease 2019 pandemic, 
these patterns were reshaped in their components: the spatial dimension 
represented by the daily travelled distance, and the temporal dimension 
expressed as the synchronization time of commuting routines. Here, 
leveraging location-based data from de-identified mobile phone users, 
we observed that, during lockdowns restrictions, the decrease of spatial 
mobility is interwoven with the emergence of asynchronous mobility 
dynamics. The lifting of restriction in urban mobility allowed a faster 
recovery of the spatial dimension compared with the temporal one. 
Moreover, the recovery in mobility was different depending on urbanization 
levels and economic stratification. In rural and low-income areas, the 
spatial mobility dimension suffered a more considerable disruption when 
compared with urbanized and high-income areas. In contrast, the temporal 
dimension was more affected in urbanized and high-income areas than in 
rural and low-income areas.

The places we visit1–3, the products we purchase4–6 and the people we 
interact with7–9, among other activities, produce digital records of our 
daily activities. Once decoded and analysed, this digital fingerprint 
provides a new ground to portray urban dynamics10,11. In particular, 
the sequence of locations gathered from mobile phone devices via 
call detail records (CDR) and location-based service (LBS) data offers 
a unique opportunity to assess a broad time span of people’s urban 
activities in almost real time, overcoming the limitations of surveys 
and censuses12,13. CDR and LBS give us information about people’s daily 
motifs across urban locations14, their attitude in exploring different 
places15, the route of their commutes16,17 and the purpose of their urban 
journey18. The location of people in cities is predictable19 and is strictly 
connected with the circadian rhythms of social activities20, as well as 
home and work locations. The spatio-temporal variability of commut-
ing patterns21 is intertwined with the mode of journey22, the population 
density (that is, urbanization level)23 and the socio-economic status24–26.

CDR and LBS contribute to the continuous creation of snapshots 
of citizens’ mobility patterns and represent a needed instrument to 

provide valuable insights on population dynamics in circumstances 
that urge rapid response27,28. They have been used to inform public 
health policymakers assessing the spread of a disease across the popu-
lation29–31. Recently, during the coronavirus disease 2019 (COVID-19) 
pandemic, LBS metrics have become a proxy to evaluate the effec-
tiveness and effects of mobility restriction policies enforced by 
local governments worldwide32–35. Using aggregated mobility data, 
researchers around the world can develop models to study and pre-
dict transmission dynamics36–38, investigate the impact and effec-
tiveness of restriction policies and re-opening strategies38–47, and 
analyse the effects of these policies on the local economy, ethnic and 
socio-economic groups48–52. Moreover, coupling the mobility data 
with the socio-economic and ethnicity groups from the census, it is 
possible to estimate the socio-economic impact of such restrictions 
in each different community53–57.

The majority of the current literature is focusing on the changes in 
the spatial dimension of mobility during the COVID-19 pandemic, that 
is, if citizens are changing the patterns of their whereabouts in terms of 
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In rural areas, the lockdowns affect more the spatial dimension, where 
the locations of human activities are spread apart and consequently 
the trips are longer (data from National Travel Survey: England 2018, 
available at gov.uk/government/statistics/national-travel-survey-2018, 
accessed on 1 June 2023). Meanwhile, in urbanized areas, the syn-
chronicity of the daily activity was dissolved possibly by the rise of 
asynchronous communing patterns (for example, flexible work hours 
or rotational/staggered shifts)77,78.

We observed that, during the pandemic, the unemployment rates 
affect more the temporal dimension than the spatial one, where high 
unemployment levels were associated with low-mobility synchroni-
zation. Moreover, this effect seems to be tied with the urbanization 
level of the local authorities. Lastly, we adopt the national statistics 
socio-economic classification (NS-SEC) as a proxy to gauge the impact 
of the pandemic on the mobility patterns of income/occupation 
groups. We noticed that areas with elevated concentration of popu-
lation on low-income routine occupations had the most substantial 
reduction in the spatial and temporal dimensions of mobility.

Results
Throughout this section, we define the spatial dimension of human 
mobility as the span of the citizen’s movement, that is, the length 
of the trips. This dimension is gauged using the radius of gyration, 
which quantifies how far from the centre of a user’s mobility the visited 
geographical locations are spread. In the temporal dimension, we are 
interested in measuring co-temporal events linked to collective, syn-
chronized behaviours. This dimension is estimated with the mobility 
synchronization metric that represents temporal regularities related to 
when people tend to leave their residences at regular time period. Our 
goal is to quantify how containment measures (for example, limited 
social gatherings, business and schools closures, and home working) 
affected travel rhythms of the populations. The intervals are identified 
through the analysis of the strongest frequency components in Fourier 
spectra of the out-of-home trips time series. For this analysis, we use 
the trip data aggregated hourly. More information on these metrics 
is available in Methods.

We analysed LBS data from January 2019 to February 2021 
in the United Kingdom. This period includes the three lockdowns 
announced by the United Kingdom’s prime minister (GOV.UK: Corona-
virus press conferences, available at gov.uk/government/collections/
slides-and-datasets-to-accompany-coronavirus-press-conferences,  
accessed on 1 June 2023). Given the discrepancies in the imple-
mentation of the different lockdown across each country in the  
United Kingdom, an analysis of the local/regional impact of the  
pandemic is included in Supplementary Information: Northern Ireland  
(Supplementary Fig. 7), Scotland (Supplementary Fig. 8), Wales  
(Supplementary Fig. 9) and England (Supplementary Fig. 6).

Figure 1 depicts the radius of gyration and mobility synchroni-
zation trends from the second week of 2020 to the seventh week of 
2021. Both metrics have similar trends up to week 18 of 2020 when 
the radius starts recovering to pre-pandemic levels while the syn-
chronization does not. The recovery in the spatial dimension coupled 
with the fluctuations in the temporal patterns suggests that, although 
people gradually started making trips similar to the period before the 
pandemic, these trips do not present the temporal synchronization 
observed before. After the third lockdown, we can notice similar trends 
in the spatial and temporal dimensions as in the period before week 18.

Since mobility synchronization measures the existing time trends, 
it can estimate the effects of human mobility restrictions policies, such 
as lockdowns. We can see reductions in the mobility synchronization 
levels during all three lockdowns. However, the second one produced 
the most considerable decrease in the synchronicity levels in most local 
authorities compared with the other two; 78.34% of the local authori-
ties experienced a reduction in the synchronization level compared 
with the baseline. In contrast, during the first and the third lockdown, 

magnitude (radius of gyration58 and/or the location visited47). In both 
cases, using de-identified data from mobile phone users, the authors 
employ the radius of gyration to assess the spatial differences in mobility.  
The temporal analyses are restricted to assessing trip duration of 
changes in spatial mobility over time. These studies do not address 
synchronized mobility patterns or other temporal aspects of human 
mobility during the pandemic. In addition, both works were published 
in the early stages of the pandemic, so mobility changes in the same 
population during different lockdowns could not be studied. Besides 
the spatial patterns, human whereabouts follow temporal regulari-
ties driven by physiology, natural cycles and social constructs59. Few 
studies have explored these regularities aiming to characterize tem-
poral components and classify people according to weights on these 
components59 or to uncover the emergency social phenomena such 
as the ‘familiar strange’60. In the context of the pandemic, it was found 
that morning activity started later, evening activity started earlier and 
temporal behavioural patterns on weekdays became more similar to 
weekends61. Since urban mobility patterns are built upon the space–
time interaction62, it is vital also to study both dimensions of mobility 
to shed light on the mechanisms behind the changes in human mobility 
during the COVID-19 pandemic.

We can assess the space–time interaction63 of human activities, 
studying the rhythms of human mobility with the spatial span of the 
urban whereabouts. The challenge at hand is to disentangle and inves-
tigate how each dimension has been reshaped during the pandemic. To 
assess the changes in the spatial mobility patterns, preserving citizen 
privacy under the General Data Protection Regulation (more informa-
tion available at gdpr-info.eu/, accessed on 1 June 2023), we employ 
the radius of gyration64,65 as a spatial metric. The radius of gyration 
was chosen for being a well-known metric applied to measure human 
mobility15,19,64–69. This measure was used during COVID-19 to gauge 
the general population’s compliance with mobility restrictions38,47,70, 
inform policymakers on their decisions38,44,47 and reveal differences 
in the impact on different socio-economic groups and minorities71–74. 
Besides the regularities in the spatial dimension, human mobility pat-
terns also exhibit a high degree of temporal regularity64. These regu-
larities are related to circadian rhythms59 and commuting for work75, 
study75 or shopping purposes76, for example. In our work, to gauge 
the temporal dimension of human mobility, we defined the mobility 
synchronization metric to quantify the co-temporal occurrence of 
the daily mobility motifs. It mainly measures the regularities linked 
to synchronize work schedules, that is, people leaving home around 
the same time to go to work. Increased synchronized mobility leads to 
augmented social contact rates, which elevate the risk of transmission 
of infectious diseases60. Hence, mobility synchronization can provide 
relevant insights to policy markers during the pandemic. Combining 
these spatio-temporal metrics gives us an idea of how far infectious 
individuals could potentially travel and how many people they could 
be in contact with (for example, public transport and office spaces).

In this Article, leveraging LBS data from de-identified mobile 
phone users who opted-in to anonymous location sharing for research 
purposes, we study how citizen mobility patterns changed from January 
2019 to February 2021 across the United Kingdom. As the pandemic 
unfolded, we observed changes in the duration and frequency of trips 
and disentangled how each mobility dimension was affected. At the 
lifting of each restrictions, the spatial mobility dimension recovered 
faster than the temporal dimension. The space–time components drift 
their trends during the second lockdown to finally align back after the 
third lockdown. Trips are defined in our paper as the event in which a 
user leaves their geo-fenced home area. For each trip, we registered the 
total time spent outside before returning home, if the trip included a 
green area, and the distance travelled.

We coupled the mobility dimensions with the urbanization, 
unemployment, occupation and income levels from the census at the  
local authorities level. Rural and urban areas manifest opposite trends. 
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the mobility synchronization decreased in 56.67% and 34.02% of the 
local authorities, respectively. The substantial drop in the mobility 
synchronization during the second lockdown might be tied to the 
changes in the stay-at-home policy79–81. This policy mainly only allowed 
essential workers to leave home to work, while in the second and third 
lockdowns this rule became more flexible and people who could not 
work from home were allowed to go to work79,82–85.

Changes in mobility according to urbanization level and 
economic stratification
Human mobility patterns are also affected by urbanization level86. For 
example, rural areas are characterized by limited accessibility to goods, 
services and activities87. In the context of a pandemic, the urbanization 
level partly explains differences in mobility patterns88, and the diffusion 
of infectious diseases89–91.

To assess how the spatio-temporal mobility patterns of areas with 
different levels of urbanization were affected during the COVID-19  
pandemic, we analyse the radius of gyration and mobility synchro-
nization by urbanization level. We divided the local authorities into 
three classes accordingly to the urban–rural classification adopted 
for England92 illustrated in Fig. 2a.

We employed the concept of residual activity64 to visualize the 
deviations of the mobility patterns during the lockdowns when com-
pared with their expected behaviour (for example, we used the same 
period of 2019 as the baseline for comparisons). Figure 2b depicts the 

different responses of the urban–rural group to the three national 
lockdowns. High residual values indicate an increased number of trips 
compared with the expected behaviour (baseline period).

During the first lockdown, urban areas presented an increase 
in expected mobility. In contrast, rural areas have a negative trend. 
However, during the second and third lockdown, an opposite scenario 
emerges. Rural local authorities increased the expected residual activ-
ity, and urban areas decreased it. These differences can be driven by the 
change in the mobility restriction policies (for example, more flexible 
stay-at-home rules79) and the characteristics and pre-existing social 
vulnerabilities of urban and rural areas, as found in previous works93

Although there is a debate as to whether a high population density 
accelerates or not the spread of the virus94, other urban and rural char-
acteristics can be risk factors for COVID-19. For example, transportation 
systems and increased inter-/intra-urban connectivity are regarded as 
key factors contributing to the spread of contagious diseases95.

The results of the radius of gyration (Fig. 2c) and the mobility 
synchronization (Fig. 2d) also indicate differences in the response of 
urban and rural areas to the lockdowns. Due to the characteristics of the 
geographic distribution of local amenities in rural areas, people tend to 
have a greater radius of gyration compared with urban areas (data from  
National Travel Survey: England 2018, available at gov.uk/government/
statistics/national-travel-survey-2018, accessed on 1 June 2023).

Analysing the trends of the radius of gyration and mobility syn-
chronization compared with the baseline of 2019, we can notice some 
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Fig. 1 | Evolution of the radius of gyration and mobility synchronization in the 
United Kingdom’s local authorities from the second week of 2020 to week 7  
of 2021. The maps depict the effects of the three English national lockdowns 
regarding the spatio-temporal metrics adopted. Note that the first lockdown 
resulted in the most notable reduction in the radius of gyration in all four nations. 
However, it is worth mentioning that the first lockdown was the only one with 

the same restrictions for all of the United Kingdom’s countries. Concerning 
mobility synchronization, the most notable reduction occurred during the 
second lockdown. Additionally, it is challenging to disentangle the effects of the 
third lockdown from the changes in the population mobility patterns caused by 
end-of-year holidays.
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differences in the urban–rural and spatio-temporal response of the 
local authorities (scatter plots in Fig. 2c,d). In the spatial dimension, 
we can see the same behaviour for urban and rural areas, charac-
terized by a reduction in the mobility levels in the week before and  
the first week of lockdown. The shift between the baseline and the  
first/second lockdown indicates that the radius during the first week 
was substantially smaller than the week before these lockdowns.

In the temporal dimension, however, the differences between the 
mobility levels in the week before the lockdown and the first week of 
lockdown (first scatter plot in Fig. 2d) are less dramatic than observed 
in the spatial dimension. Nonetheless, compared with the baseline, we 
can still see a reduction in the synchronization values for urban and 
rural areas, especially in the second and third lockdowns (baseline 
plot in Fig. 2d).

As discussed, the number of trips has decreased across all the 
urban–rural groups during the pandemic. Since work-related activities  
often create the necessity to leave home, the rise in home working 
and unemployment rate contributes to the reduction in the mobility 
levels96. Next, we study the relationship between the spatio-temporal 
mobility metrics and the unemployment rate for areas with different 
levels of urbanization, both before and during the pandemic. We esti-
mate the size of the unemployed population based on the unemploy-
ment claimant count (data from the Office for National Statistics (ONS), 
available at ons.gov.uk/employmentandlabourmarket, accessed on  
1 June 2023).

We divided the time series of the radius of gyration and mobility  
synchronization into pre-pandemic (from April 2019 to February 2020) 

and pandemic (from April 2020 to February 2021) periods, and we 
analysed the Kendall Tau correlation between them and unemploy-
ment claimant count.

At first glance, the positive correlation between the radius of 
gyration and the unemployment rate (Fig. 3a,b) seems to be disso-
nant from previous works25,97. However, this result can be due to a rise 
in the unemployment rate and the spatial mobility levels before the 
pandemic. For the pandemic period, although the lockdowns have 
reduced the radius during specific periods, we see in Fig. 1 a period 
between April and August 2020 when the radius increased, making 
the correlation positive.

While the correlation between the spatial dimension of mobility 
and unemployment drops only marginally, preserving the positive sign 
and affecting more urban than rural areas, the correlation between the 
time dimension of mobility and unemployment drops considerably, 
becoming negative and impacting more rural districts than the urban 
(Fig. 3c,d).

The same explanation applies to mobility synchronization 
in the pre-pandemic period. During the pandemic, we can see that  
the spatio-temporal dimensions display different patterns between 
May and November, and the temporal one does not present the same 
steep recovery as the spatial between April and August 2020. The 
oscillations in the patterns of the temporal dimension impacted  
the correlation with unemployment, making it negative.

We argued that work trips contribute to the creation of  
our mobility patterns. Moreover, the type of occupation, among other 
socio-demographic characteristics, also influences those patterns98.  
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In this sense, we use the English NS-SEC (available at ons.gov.uk, 
accessed on 1 June 2023) to gauge the response of employment rela-
tions and conditions of occupations to the pandemic. Using this 
classification, we also have insights into the connection between the 
spatio-temporal mobility and wealth level. This analysis is important 
since wealth and economic segregation are linked to differences in 
mobility patterns and response to human mobility restrictions under 
the COVID-19 pandemic33.

In the NS-SEC classification, classes related to managerial occu-
pations exhibit strong positive correlation with income as depicted 
in Fig. 4a. In contrast, lower supervisory, technical, semi-routine or 
routine occupations negatively correlate with income. The remainder 
of NS-SEC classes present a strong correlation with income.

Moreover, Fig. 4b shows that, before and during the COVID-19 
pandemic, people’s radius of gyration and the mobility synchroniza-
tion within an area tend to grow as the concentration of population in 
managerial occupations increases. The opposite result is observed 
when analysing the percentage of the population (quartiles Q1 to Q4) 
in lower supervisory, semi-routine or routine occupations.

In all scenarios depicted in Fig. 4, we can see a reduction in the 
temporal and spatial dimensions of mobility during the pandemic. 
However, each group contributed differently to the overall change in 
the mobility observed during the pandemic. As mentioned before, the 
first national lockdown produced the most substantial impact on the 
spatial dimension of mobility. In contrast, the second greatly impacted 
the temporal dimension.

Besides the difference in the time–space facets of human mobility  
analysed, changes in the duration99 and the purpose100 of the trips were 

also observed during the pandemic. Researchers found that these 
changes vary accordingly to income levels100 and could be related to 
the emergence of new habits101.

To assess the changes in the duration of the trips, we measured 
the time elapsed when the user left their home geo-fencing area and 
entered it again. We can further disaggregate the trips by classifying 
them as work-related and other types based on their starting time. 
Comparing the duration of the trips in a week with no mobility restric-
tion Fig. 5a with a week with lockdown Fig. 5b, we can see that trips clas-
sified as work-related display a reduction in their length. The analysis 
based on the income/socio-economic groups shows that high-income 
groups presented the most notable reduction compared with the 
baseline year of 2019, depicted in Fig. 5b. This result is in line with a 
similar paper in the literature, which also reports differences related 
to the income groups61,99.

Besides the trips’ duration, another relevant aspect being ana-
lysed is the impact on the type of trips. We study the differences in 
leisure-related trips before and during the pandemic to assess this 
impact. Here these trips are estimated on the basis of examining trips 
that include green areas such as parks, sports facilities and play areas. In 
a period without any mobility restriction measures, we expect to see an 
increase in these trips from the end of winter until the end of summer. 
This number should start decreasing as when the winter approaches. As 
shown in Fig. 5d, using the baseline year of 2019, before the first national 
lockdown, there was no substantial difference between the number of 
trips by rural and urban local authorities. This pattern stays consistent 
until the start of the summer when the restrictions are stated to be 
lifted79. After that, we can see a substantial difference in the amount of 
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Fig. 3 | Correlation between the spatio-temporal metrics of human mobility 
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is depicted in before and during the pandemic. b, The correlation when the 
local authorities are grouped by level of urbanization also before and during 
the pandemic. c, The correlation between mobility synchronization with the 
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negative. It is also worth mentioning that b and d reveal a possible association 
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green areas trips in rural and urban areas. Although one could argue 
that this could indicate a preference towards more natural leisure trips 
in rural areas, further investigation is required to identify the reasons 
behind these differences.

Discussion
The accurate estimation of spatio-temporal facets of human mobility 
and gauging its changes as a reflection of the pandemic and mobility 
restriction policies is critical for assessing the effectiveness of these 
policies and mitigating the spread of COVID-19 (refs. 79,82–84,102).  
A vital contribution of our work lies in applying two metrics to disentan-
gle the changes in mobility’s temporal and spatial dimensions. Using the 
radius of gyration, we could identify that the effect of the first lockdown 
was more substantial than the other ones in changing the spatial charac-
teristics of citizens’ movement. Among the reasons that could lead to this 
result, we can mention more strict policies adopted in the first lockdown 
and the lockdown duration79,85. However, further investigation is needed 
to obtain more pieces of evidence to support these hypotheses.

In contrast to the spatial dimension of mobility, the results indicate 
that the temporal one was more impacted during the second lockdown 
when more flexible mobility restriction policies were enforced. After 
the first lockdown, we argue that people who could not work from 
home were allowed to leave home and work in the office as long as they 

respected social distancing rules81,85. Different work shifts were created 
to comply with these rules and limit the number of people inside indoor 
spaces. As a result, instead of having the same, or similar, work schedule 
for all employees, they started to be divided into groups that should 
go on different days of the week and at different times, impacting the 
temporal synchronization of their movement.

Besides the changes during different periods and under different 
mobility restriction policies, we also analysed the interplay between 
the characteristics of the area (for example, level of urbanization, 
income and unemployment rates) and the spatio-temporal human 
mobility metrics adopted. We noticed that rural areas presented a more 
considerable reduction in spatial patterns compared with urban ones. 
At the same time, urban areas were more impacted in their temporal 
dimension than rural ones. These differences observed in the urban–
rural classification are correlated with the population density of the 
regions and can affect the impact of the mobility restriction measures.

We also observed changes in the response of regions regarding 
their unemployment rates and populations income. For the unem-
ployment rates, we observed that before the COVID-19 pandemic, 
the unemployment claimant count was positively correlated with the 
radius of gyration and mobility synchronization in the majority of the 
areas. However, during the pandemic, this correlation became weaker 
for the radius of gyration and negative for mobility synchronization. 
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Fig. 4 | Relation between the NS-SEC classification, income and their impact 
on the spatio-temporal mobility patterns before and during the pandemic. 
The ‘Before pandemic’ label corresponds to the period from April 2019 to 
February 2020, while the ‘During pandemic’ corresponds to the period between 
April 2020 and February 2021. a, The correlation between the NS-SEC classes and 
the population income (N = 316 English local authorities). The classes coloured 
in pink and purple have positive and negative correlations with the population 

income. The box plot consists of boxes that span from the 25th percentile (Q1) to 
the 75th percentile (Q3), with median values (50th percentile) represented by a 
central line. The minimum and maximum values are determined by subtracting 
1.5 times the interquartile range (IQR) from Q1 and adding 1.5 times the IQR to Q3, 
respectively. Also shown is the radius of gyration/mobility synchronization of 
each NS-SEC class before and during the pandemic. b, The differences between 
the first and second lockdowns in the spatio-temporal metrics.
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Less urbanized areas tend to have a lower spatial correlation and a 
higher temporal correlation with unemployment than more urbanized 
areas. Using the NS-SEC classification as a proxy to assess the response 
of different income and work groups, we observed that low-income 
routine/semi-routine occupations were the groups that presented 
the greatest reduction in their radius and synchronization. Moreover, 
the changes in the mobility restriction policies after the first lockdown 
had an impact on these groups, which can be the reason behind the 
greatest impact on the temporal dimension of mobility79,85. Similarly, 
changes were also observed concerning the duration of work-related 
trips and the number of trips to green areas. These differences were 
also observed at urbanization and socio-economic levels.

Regarding our work’s contribution to policymakers, we argue 
that the spatio-temporal metrics employed in this study help to assess 
mobility changes before and after the implementation of policies, 
as seen in the first and second lockdowns with flexible stay-at-home 
policies79–81. Moreover, our results indicate that different groups 
(socio-economic and urban–rural) experience and respond to 
these policies differently. These results were also found by similar 
works74,93,96,99 and provide insight to policymakers to design strategies 
that consider each group’s particularities.

In summary, the analysis of the spatial dimension of human  
mobility coupled with the insights from the study of the temporal 
dimension allows us to characterize the impact of policies such as 
stay-at-home and school closures on the population of different areas/
socio-economics. These differences suggest that each group experi-
ences, in a particular way, the emergence of asynchronous mobility 
patterns primarily due to the enforcement of mobility restriction poli-
cies and new habits (for example, home office and home education).

Methods
Data sources
Human mobility data. Spectus provided the human mobility data used 
in this research for research purposes. These data were collected from 
anonymous mobile phone users who have opted-in to give access to 
their location data anonymously, through a General Data Protection 
Regulation-compliant framework. Researchers queried the mobility  
data through an auditable, cloud-hosted sandbox environment, receiv-
ing aggregate outputs in return. The datasets contain records of UK 
users from January 2019 to early March 2021. In total, we have over 17.8 
billion out-of-home trips and about 1 billion users’ radius of gyration 
records. Note that the radius logs are measured on a weekly basis, 
while the trips are recorded on a daily basis. More information on the 
datasets is available in Supplementary Information. We assessed the 
representativeness of the data by analysing the correlation between 
the number of users and the population of the local authorities.  
A strong positive correlation between the populations compared with 
r2 value equal to 0.775 was obtained (Supplementary Fig. 1a). The data 
are composed of records of when users leave the area (as a square of 
500 m) that is related to their homes and the length of the trips. The 
home area is estimated on the basis of the history of places visited, the 
amount of time spent at the area and the period when the user stayed 
at the location following21,103. It is worth mentioning that we only used 
mobility-related data in this work due to privacy concerns. No personal 
information or another type of information that would allow the iden-
tification of uses was used. Also, the data are aggregated at the local 
authority level as the aim is to study trends at the population level 
rather than the individuals. The dataset on the trips to the green areas 
is composed of records of the number of trips that include green spaces 
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across Great Britain. These records were collected daily grouped by 
the hour the trip starts, and are aggregated at the local authority level.

Other data sources. The Income study employed data from the report 
on income estimates for small areas in England in 2018 provided by the 
ONS104. It is available for download and distribution under the terms 
of the Open Government Licence (available at www.nationalarchives.
gov.uk/, accessed on 1 June 2023). Similarly, the analysis of the unem-
ployment claimant rate, the urban–rural classification of English local  
authorities92 and the NS-SEC105 used the data published by the ONS  
publicly available under the terms of the Open Government Licence. 
The remaining socio-economic data utilized aggregated data from the  
UK Census of 2011 (ref. 106), which is available for download at the  
InFuse platform also under the terms of the Open Government  
Licence. For the green area study, we used the Ordnance Survey 
Open Greenspace dataset to obtain information on the locations of  
public parks, playing fields, sports facilities and play areas (OS Open 
Greenspace, available at ordnancesurvey.co.uk/os-open-greenspace, 
accessed on 1 June 2023). Our analysis did not include categories  
related to religious grounds, such as burial grounds or churchyards.

Metrics and other methods
Radius of gyration. We conducted the study of the radius of gyration 
(RG) following the definition of Gonzalez et al.64. It can be described 
as the characteristic distance travelled by a user u during a period and 
is calculated as follows

RGu =
√√√
√

1
Nu

Nu

∑
i=1

( ⃗r iu − ⃗r cmu )
2

(1)

where, Nu represents the unique locations visited by the user, ⃗r iu is the 
geographic coordinate of location i and ⃗r cmu  indicates the centre of mass 
of the trajectory calculated by

⃗r cmu = 1
Nu

Nu

∑
i=1

ni
u ⃗r iu (2)

where ni
u is the visit frequency or the waiting time in location i. The 

mobility value of each region is the median value of the radius of  
gyration of the users within a temporal window of 8 days centred 
around a given day.

Residual mobility activity. The concept of residual mobility activity  
displayed in Fig. 2b was adapted from ref. 107, and it is used to  
highlight differences between the measured behaviour of the local 
authorities compared with their expected behaviour. For a given  
local authority i is calculated as follows

ares
i (t) = anorm

i (t) − a−norm(t) (3)

where a−norm(t) is the normalized activity averaged over all local authori-
ties under at each particular time, and anorm

i (t) is computed similarly  
to the Z-score metric

anorm
i (t) =

aabs
i (t) − μabs

σabs
(4)

where aabs
i (t) is the activity in a local authority at a specific time t, μabs is 

the mean activity of all local authorities under the same urban–rural 
classification of i at a specific time, and σabs represents the standard 
deviation of all local authorities under the same urban–rural classifica-
tion of ai,j at a particular time.

Mobility synchronization. The mobility synchronization is not limited 
to conventional commuting routines. It can happen at any time of the 

day in which people tend to perform certain activities. For example,  
school teachers, healthcare professionals and other routine or 
semi-routine occupations tend to have defined times reserved for 
specific activities (for example, eating, exercising and socializing). To 
have a more accurate portrait of the mobility synchronization patterns, 
instead of analysing it as a concentration of trips around certain hours, 
we define the mobility synchronization as the total magnitude in the 
periodicity in the out-of-home trips.

First, using 2019 as a baseline, we analyse the wavelet and Fourier 
spectra to determine the expected strongest frequency components 
in the mobility regularity. For a given mother wavelet ψ(t), the discrete 
wavelet transform can be described as

ψj,k(t) =
1
√2j

ψ ( t − k2j
2j

) (5)

where j and k are integers that represent, respectively, the scale and 
the shift parameters. For the Fourier transform, a discrete transform 
of the signal xn, for n = 0…N − 1 is:

Xk =
N−1
∑
n=0

xne−i2πkn/N (6)

where K = 0…N − 1 and e−i2πkn/N represents the Nth roots of unity.
Employing these two transforms, we found that the mobility 

patterns are characterized by five main periods, namely 24 h, 12 h,  
8 h and 6 h (Supplementary Fig. 3). However, because the 24 h  
component overshadows the other three components (Supple-
mentary Fig. 5), we focus the analysis on the 12 h, 8 h and 6 h periods. 
Moreover, during the pandemic, these periods were more affected 
than the 24 h component (Supplementary Fig. 4). Next, the mobility  
synchronization metric is defined as the sum of the powers from  
the Lomb–Scargle periodograms108 corresponding to the 12 h,  
8 h and 6 h. The generalized Lomb–Scargle periodograms is calcu-
lated as

PN(f) =
1

∑iy
2
i
{
[∑iyicosω(ti − τ)]2

∑icos2ω(ti − τ) +
[∑iyisinω(ti − τ)]2

∑isin2ω(ti − τ) } (7)

where yi represents the N measurements of a time series at time ti, ω  
is frequency and τ can be obtained from

tan2ωτ =
∑isin2ωti
∑icos2ωti

(8)

The mobility synchronization is a value between 0 and 1, where 
higher values for a given period indicate that more people left their 
homes simultaneously. In the context of the pandemic, high mobility  
synchronization can be translated into a potential increase in the  
likelihood of being exposed or exposing more people to the virus due 
to the large number of people moving simultaneously.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The paper contains all the necessary information to assess its conclu-
sions, including details found in both the paper and Supplementary 
Information. Due to contractual and privacy obligations, we are unable 
to share the raw mobile phone data. However, access can be provided 
by Spectus upon agreement and signature of the non-disclosure agree-
ment. More information on data access for research can be found at 
Spectus -"Data for Good" movement.
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Code availability
Scripts and Notebooks in Python with our analyses and to reproduce 
the results in this paper were archived with Zenodo (https://doi.org/ 
10.5281/zenodo.8014785).
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